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Abstract

High level of greenhouse gases emission in fossil fuels has induced a significant transition from
conventional energy sources to renewable energy. However, using renewable energy in electric-
ity grids has limitations, such as intermittency and lack of efficient energy storage. This paper
focuses on constructing the quanto options contract to help renewable energy producers hedge
the risk against low photovoltaic (PV) production and electricity prices. To achieve our objec-
tive, we first model the interday PV power production with a combination of a deterministic
and stochastic model. We analyse empirical data for daily solar production in three operators in
Germany ranging from 1 January 2016 to 31 December 2020. We discovered that all estimated
parameters of the deterministic process are highly significant. Meanwhile, we use an autoregres-
sive (AR) process to describe the random behavior in the production. The results demonstrated
that AR(2) is suitable enough to explain its stochastic factor. For the error terms analysis, we
observed a clear sign of seasonal heteroskedasticity supported by the left skewed density. In
addition, we observed a clear seasonal pattern in the squared error terms, where we suggest
using seasonal variance and skewed normal distribution to describe its dynamic. As for an ap-
plication, we embed the PV model in the power price modeling. We found that AR(3) process
is sufficient to explain the price behavior and that normal distribution best fits the error terms.
Using the suggested PV and power price model, we construct the quanto options contract for
renewable energy producers using Monte Carlo simulations. We discovered that the electricity
price payoffs are consistent throughout the year, whereas PV and quanto options payoffs vary
greatly depending on the season. The quanto options price result shows that the prices vary
during four seasons, with the highest variation in July.
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1 INTRODUCTION

In the contemporary age, the world’s electricity consumption has increased, which induced
high utilization of fossil fuels such as coal, oil, and gas. Extreme consumption of fossil fuels may
emit a high level of greenhouse gases such as carbon dioxide, methane, and nitrous oxide [19].
Figure 1 shows the overview of U.S. greenhouse gases emission in 2020. These gases may increase
not only the global temperature but also threaten the health of human beings. This issue is be-
coming a debatable topic around the world on how to overcome this problem. Climate change
and local air pollution are the most significant global energy transition issues. For example, air
pollution is a primary driver in countries like China and India [21]. However, the adverse health
impacts of air pollution, mainly related to energy supply and usage, are also gaining attention in
European countries. To overcome this genuine issue, most countries worldwide are transform-
ing their non-renewable energy sources to renewable energies, such as PV, wind, biomass, and
geothermal, which are much cleaner, safer, and cheaper. This transformation also may reduce the
cost of universal energy access, enhance health, boost energy safety, and diversify energy supplies.

Figure 1: Overview of U.S. Greenhouse Gases Emission in 2020. (Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 -
2020).

The announcement of the Sustainable Development Goals (SDGs) by the United Nations Gen-
eral Assembly (UNGA) has created a practical framework for global cooperation to create a sus-
tainable future for the earth [21]. One of the 17 lists of SDGs focuses on the production of afford-
able and clean energy. In contrast to all types of renewable energy, solar power is becoming one
of the fastest developed in the world energy sources. It is now the second place for renewable en-
ergy technology, after wind, in terms of installed capacity [26]. Despite the tremendous increase
in demand in recent years, the cost of solar PV modules and inverters has decreased, rewarding
project developers but harming manufacturers who have battled to maintain profits.

However, renewable energy has its limitations. Themost critical factors are intermittent sources
and insufficient storage for excess energy production. For instance, PV power can only be pro-
duced during the day with the presence of the sun, and there will be no production at night. Since
there is no efficient storage to store the energy produced, it must be consumed once produced.
Furthermore, forecasting the amount of solar radiation that a photovoltaic panel will capture is a
complex task due to the influence of cloudiness and fluctuations in solar irradiance.Voluminous
studies have discussed the efficiency of PV panels to maximize production [13, 27]. However,
there are limited references studied on financial perspectives. Since the sun intensity and cloud
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cover are the essential factors in determining the amount of PV generation, we forecast the PV
production by considering both the deterministic and stochastic factors represented by the sun
intensity and cloud cover, respectively.

The literature on stochastic models for electricity pricing and different commodities has in-
creased rapidly in previous years. Many researchers have discovered that the models commonly
utilized in financial markets are irrelevant because of the unique features of commodity prices,
especially electricity prices. Dutta and Mitra [18] have discussed the literature on various topics
related to dynamic electricity pricing and recorded future research possibilities related to pricing
policy, consumer eagerness to pay, andmarket segmentation in this area. Furthermore, Borovkova
and Schmeck [11] and Deng et al. [16] uses the Monte Carlo simulation to explain the electricity
price, while Biagini et al. [10] simplify modeling an electricity futures market with a risky asset
added.

As aforementioned, intermittency is the foremost hurdle to using renewable energy. PV power
can only be generated in the presence of the sun. This results in no production at night which can
be overcome with fossil fuels generation. A low volume of PV production may lead to high pro-
duction of non-renewable. This may lead to low electricity prices if the supply exceeds demand.
As a result, renewable energy producers will be hit twice due to low energy production (renew-
able energy) and low power price. To overcome such risk, renewable energy producers can enter
a derivative contract to hedge their risk exposure, such as a quanto options derivatives contract.

There aremany past studies researched onweather derivatives contracts. For example, Esunge
and Njong [20], Tastan and Hayfavi [34] and Wang et al. [37] had been introduced to cover the
risk exposure fromweather conditions with different approaches such as the Ornstein-Uhlenbeck
process and Monte Carlo simulations. In addition, Cui and Anatoliy [14] also conducted a study
analyzing various types of weather-related risks in different industries. They proposed a dynamic
hedging strategy to hedge time-ahead energy using temperature futures. Nevertheless, there are
minimal sources of quanto options derivatives, especially in the energy market. The quanto op-
tions typically refer to derivatives used to hedge foreign exchange fee risk, wherein the asset is
denominated with one currency but resolved in another. There are few past research related to
the pricing of currency quanto options [30, 35], which derive and develop a strategy for pricing the
quanto option. In energy markets, Benth et al. [4] evolved a quanto options rate concerning wind
energy production and electricity price, while Benth et al. [6] have derived analytical solutions
of quanto options rate on futures contracts and a temperature index. In this study, we are keen to
investigate if quanto options may help renewable energy producers to mitigate their volume and
price risk simultaneously.

Generally, there are two types of models to forecast the production of PV such as paramet-
ric and non-parametric. The parametric model (deterministic or physical) summarizes meteo-
rological factors such as sun irradiation and temperature on solar cells. On the other hand, the
non-parametric (stochastic) model does not assume any knowledge of the internal system. It
is noteworthy to mention that many studies that applied a non-parametric technique had been
successfully conducted by including machine learning models, Support Vector Machine (SVM)
[38, 31], NumericalWeather Prediction (NWP) [1, 29] and some improvement onArtificialNeural
Network (ANN) [39, 17, 32]. Unfortunately, both parametric and non-parametric have their pros
and cons. The parametric model, for example, necessitates a few variables, such as ambient and
cell conditions. On the other hand, non-parametric models are frequently chastised for lacking
historical data, being computationally complicated, and having a significant possibility of over-
fitting. Moreover, since solar energy is nonlinear and fluctuates, thus a single forecasting model
is insufficient to represent real generation behavior [39]. By proposing a simpler model which
is powerful enough to represent the concept of forecasting PV generation, this hybrid model is

533



N. A. A. Arsat et al. Malaysian J. Math. Sci. 17(4): 531–556(2023) 531 - 556

expected to contribute more. For example, Benth and Ibrahim [5] proposed a simple model but
sophisticated enough to forecast PV production. We use that proposed model since it captured
the seasonality behavior of the data very well using a discrete-time AR process. For our study, we
want to investigate further if the continuous-time AR process may contribute to modeling the PV
and power prices. This is an essential step before pricing the quanto options, where pricing the
derivatives requires a continuous-time process.

In this study, we concentrate on estimating the PV production in three German transmission
system operators: 50Hertz, Amprion, and TransnetBW. An empirical analysis of German photo-
voltaic (PV) production is conducted in Section 2. This analysis involves examining the trend and
seasonal component, utilizing a continuous autoregressive (CAR) process to model the stochas-
tic behavior, and fitting the residuals with a suitable distribution. In the subsequent section, we
model the simulated power sot prices using the proposed photovoltaic (PV) production model as
discussed in previous section. Section 4 of this paper presents an analysis of an application to PV
based options namely quanto option followed by the conclusion.

2 PV Power Generation Analysis

2.1 Data description

In this section, we describe the PV production data. The data are obtained from German
operators. The photovoltaic (PV) data was gathered over a period spanning from January 1st,
2016 to December 31st, 2020. All of the data were retrieved from their general websites; https:
//www.50hertz.com/en/, https://www.amprion.net/index-2.html and https://www.transnetbw.
de/en. Themeasurements were taken at 15-minute intervals, specifically during the time frame of
12:00 pm to 12:15 pm. We refer to 12 pm production as it provides a benchmark for the maximum
PV production at this hour. Our analysis is based on 1825 observations for PV production. In this
paper, we only cover the area shown in Figure 2.

Figure 2: Transmission system operators in Germany.

Furthermore, Table 1 displays the descriptive statistics. The data presented in the table in-
dicates that the mean production levels at 12 p.m. for 50Hertz, Amprion, and TransnetBW are
3782.77 MW, 3266.2 MW, and 1979.19 MW, respectively. Additionally, it was determined that the
dataset demonstrates a right-skewed distribution and negative kurtosis, indicating non-normality.
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Table 1: Descriptive data for the operators.

Operators Min Max Mean Std. Dev. Skewness Kurtosis

50Hertz 166 9021 3782.77 2235.38 0.19 -1.10
Amprion 75 7458 3266.20 1789.02 0.17 -1.08

TransnetBW 49 4337 1979.19 1112.62 0.11 -1.23

2.2 Trend and seasonal component

We demonstrate the time series PV power generation of each TSOs in Figure 3. It can be seen
that there is an apparent seasonal pattern in the production of each TSOs.

Figure 3: Time series of PV production.

We follow a step-by-step procedure for the data analysis. We first check to see if the trend
and seasonality components are present. Next, we employ an autoregressive (AR) model to cap-
ture the stochastic behaviour observed in the deseasonalized data. Subsequently, the probabilistic
characteristics are determined through the execution of an analysis on the error terms. The time
series and the PV production’s autocorrelation function (ACF) show strong seasonal effects, as in
Figures 3 and 5, respectively. By following the proposed forecasting model by Benth and Ibrahim
[5], the PV model is as follows:

ln
(
PV (t)

)
= Λ(t) +X(t), (1)

where,

Λ(t) = a+ bt+ c ln(I(t)). (2)

The suggested model represents a combination of a deterministic, Λ(t) and stochastic function,
X(t). In this example, we define PV (t) as the PV generation where t = 0, 1, 2, . . . , 1825 days com-
mencing from 12 pm. The variable a denotes the mean level of PV production, while b represents
the growth rate resulting from the expansion of capacity. The variable I(t) is used to denote the
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intensity of the sun, which is employed to describe its cyclical pattern, with c serving as a scal-
ing parameter. One can refer to the paper of Benth and Ibrahim [5] for a complete sun intensity
function. In the following subsection, we will explore an appropriate framework for the stochastic
component, X(t).

Figure 4: Fitted curve of 12 pm generation (red - ln(I(t)), black - ln(PV (t)).

Figure 5: ACF plots.

In temperature variations, we found that tomodel the seasonality components, fewpast studies
used a cyclical trigonometric function with annual periodicity [7, 9] and Härdle and Cabrera [22]
same case as for PV production Ibrahim [24] and Veraart [36]. We consider applying the solar
intensity function, which has a clear physical purpose, rather than a summation of trigonometric
functions [5]. The sun intensity function, I(t), considers air mass and earth angle to determine
howmuch solar radiation is captured, determining how the solar panels store much sunlight. The
variable c in eq. (2) represents the conversion factor that transforms the theoretical maximum
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solar energy that may be harnessed into the actual energy production achieved. The solar panel
area, cell quality, location, and other factors are taken into consideration by the conversion factor
c.

We use lm function in R programming to capture deterministic factors. Table 2 displays the
outcomes obtained. Considering that the p values are below the significant level, α = 0.05, all
parameter estimations are highly significant. The estimated b parameters have positive values,
which indicates the upward trend in the mean level of PV production for all TSOs. It is worth
noting that the parameters a and c display a reasonable level of stability across all three operators.

Table 2: Measured variables for linear trend and seasonal function.

Operators â b̂ ĉ

50Hertz 8.643435 0.0002995543 3.479342
Amprion 8.606665 0.0001611598 3.422112

TransnetBW 8.083443 0.0001634870 3.864585

As shown in Figure 4, the seasonality behavior of PV production is well captured with the
proposed deterministic function, Λ(t), represented by the red curve and Figure 5 show their auto-
correlation function (ACF). The deseasonalized PV power is calculated by eliminating the linear
trend and seasonal components as shown:

X(t) = ln(PV (t))− Λ(t). (3)

2.3 An autoregressive model

In Figure 6, we plot the ACF and partial autocorrelation function (PACF) of deseasonalized
data. The results demonstrated that the ACF of the deseasonalized data decayed with time, while
the PACF cut off at certain lags. These show a signal of the AR process. Since it is difficult to
determine the correct order or AR process using the ACF plot, we refer to the PACF plot, demon-
strating that the AR process with order one is sufficient to capture the AR structure in the random
process of PV generation of 50Hertz and Amprion. However, TransnetBW requires AR process
with order two. To simplify the computation, we use the autoregressive process with order two
for all operators as in the following function:

X(t) = β1X(t− 1) + β2X(t− 2) + ε(t), (4)

where β1 and β2 are constants and ε(t), t = 1, 2, . . . are the error terms of the AR(2) process that
are independent, and identically distributed (i.i.d) random variables.
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Figure 6: (Left) ACF, (Right) PACF of deseasonalized data.

Table 3 shows the estimated parameters of AR(2). We use R programming to test the AR pro-
cess’s stationarity with the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) tests. The fitted AR(2) models are stationary because all three moduli of the AR
polynomial roots are outside the unit circle.

Table 3: Regression parameter of AR(2) process.

Operators β1 β2

50Hertz 0.2807 0.0194
Amprion 0.4214 -0.0031

TransnetBW 0.3429 0.0585
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2.4 Error terms

In this subsection, we proceedwith the error terms analysis ε(t). The graphical representations
depicted in Figure 7 provide evident indications of the presence of seasonal heteroskedasticity
within the error data. Additionally, it is worth mentioning that the p-values displayed in Table 4
with 5% significant level demonstrate a small magnitude for all TSOs. Furthermore, Figure 8
illustrates a density distribution that exhibits left skewness and a significant leftward tail. These
imply that the error terms do not follow normal distribution. The descriptive results is reported
in Table 4.

Figure 7: Error Terms.

Table 4: K-S value, p-value, Skewness, Kurtosis (Error Terms).

Operators K-S statistics p-value Skewness Kurtosis

50Hertz 0.20579 2.476 ×10−7 -0.55 0.49
Amprion 0.23961 2.476 ×10−7 -0.75 1.39

TransnetBW 0.21114 2.476 ×10−7 -0.90 1.28
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Figure 8: (Left) Density. (Right) Q-Qplot of Error Terms.

We first plot the ACF of the squared error components, as shown in Figure 9, in order to estab-
lish a suitable model for the seasonal volatility exhibited in Figure 7. The plots show a clear sea-
sonal pattern. Therefore, we propose adopting the methodology presented in the work of Benth
and Ibrahim [5] and Benth and Šaltytė Benth [7] , wherein a truncated Fourier function was em-
ployed representing the seasonality of the residuals. Let,

ε(t) = σ(t)ε̄(t), (5)

where σ(t) represents the square root of a truncated Fourier series, in which

σ2(t) = b1 +
L∑

l=1

(
b2l cos

(
2lπt

365

)
+ b2l+1 sin

(
2lπt

365

))
, (6)

and ε̄(t) represent the standardized error terms with t = 1, 2, . . . , 1825.
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Figure 9: ACF Squared Residual.

In order to execute this procedure, we collect the squared error values correspond to the first
week of each year, subsequently calculating their average and assigning them the label "Group
1" (consisting of 28 data points per week, spanning from 2016 to 2020). We repeat the same step
until week 52. We then use the nonlinear least squares approach, which uses the nls function
in R programming to fit σ2(t) to our data, as approached by Benth and Šaltytė Benth [8]. As a
result, the midweek is used as temporal data points within the fitting function of the function σ2t,
where t denotes Thursday within the specific week. We set L = 1 in the definition of σ2(t) in
eq. (6), as the probability of the estimated variables of L greater than one are not significant. We
report the results of estimated parameters in Table 5, while the fitted plot in Figure 10 shows that
the proposed model may fit the averaged squared error terms well. Based on the plots, we can
conclude that winter variations are higher than summer.

Table 5: Fitted parameters of σ2(t).

TSOs b1 b2 b3

50Hertz 3.9445 -3.4466 -1.7155
Amprion 2.7939 -2.4539 -1.1821

TransnetBW 3.5315 -3.0680 -1.4600
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Figure 10: Fitted Average Squared Error Terms.

Figure 11 presents the ACF plots of the standardized and squared standardized error terms.
Again, the plots display variation around zero, showing that the proposed model, as in eq. (5),
successfully captured the seasonal pattern observed in Figure 9.
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Figure 11: (Left) ACF of Standardized Error Terms, (Right) ACF of Squared Standardized Error Terms.

The density of the standardised error terms in Figure 12 is still abnormal despite the possibility
that the proposedmodel can capture the seasonality behaviour in the error terms. Table 6 presents
significant p-values at 5% signifinicant level, while Figure 12 illustrates that the distribution data
exhibits negative skewness, as evidenced by the longer tail to the left in the Q-Q plots. The en-
ergy market acts in a stylised manner like this. Consequently, the null hypothesis of normality is
rejected. The standardized error terms were fit with the skewed normal distribution rather than
the normal distribution. The distribution proposed by Azzalini [2] falls within the category of
skew-elliptical distributions. This class of distributions is known for its ability to retain the key
behaviour of normality, while it also offering additional advantage in accommodating skewness
constraints. This method is also used in a few past studies, such as Biagini et al. [10] and Larson
et al. [29]. The three parameters for the probability density function are ξ, ω, and α, given by

f(x; ξ, ω, α) = 2ϕ(x)Φ(αx), (7)

where ξ, ω and α are location (mean), scale (standard deviation > 0), and shape parameters,
correspondingly. On the other hand, ϕ(·) indicate the standard normal density and Φ(·) is its
distribution function. In order to include location and scale paramaters, we can transform
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x → x− ξ

ω
. Thus, the probability density function in eq. (7) becomes

f(x) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α

(
x− ξ

ω

))
.

Figure 12: (Left) Density plot. (Right) Q-Q plot of Standardized Error terms.

Table 6: K-S value, p-value, Skewness, Kurtosis (Standardized Error Terms).

Operators K-S stat p-value Skewness Kurtosis

50Hertz 0.0833 3.344 ×10−5 -0.82 0.63
Amprion 0.0683 2.716 ×10−3 -0.86 1.11

TransnetBW 0.1140 2.476 ×10−7 -1.03 1.16

We fit our standardized error terms with skewed normal distribution using dsn function in R
programming. The estimated coefficients and the fitted plots are shown in Table 7 and Figure 13,
respectively. Figure 13 shows a reasonably good fit between the fitted skewed normal distribution
and the empirical density.
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Table 7: Estimated variables of standardized error terms.

Operators ξ ω α

50Hertz 1.193021 1.551259 -3.977338
Amprion 1.068553 1.411560 -3.350651

TransnetBW 1.147100 1.518889 -3.827508

Figure 13: Fitted Skewed Normal Distribution.

2.5 A continuous-time AR(p) dynamics

Due to their mathematical use, we usually choose a continuous-time stochastic process for
pricing or hedging a derivative in the mathematical finance field. For instance, Darus and Taib
[15] use a continuous time autoregressive moving average (CARMA) to model the temperature
insurance pricing. This proves that CARMA process is relevant in energy market. Henceforth, we
propose a process in continuous time for the autoregressive models concerning the time series of
photovoltaic production and power pricing.

We clarify the stochastic process Z(t) for t ∈ [0,∞) and p ∈ N by

dZ(t) = AZ(t) dt+ epσ(t) dL(t), (8)

where A is the p× p-matrix

A =

[
0 I

−αp ... −α1

]
, (9)

for constants α1, . . . , αp are positive values and I is the (p − 1) × (p − 1) identity matrix. There-
fore, the p’th standard basis vector in Rp is represented by ep, and a real-valued square integrable
Levy process is represented by L. Given that the σ is measurable and deterministic, with square-
integrability over any range of the positive real line, it follows that the function is also integrable
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with respect to the Levy process. We have AR(2)-time series model, but along with noise being
Gaussian, advocating for the selection of L = B, a Brownian motion, and σ(t) = σ. By using sys-
tem of equations as in Benth and Šaltytė Benth [8], where we transform the AR(2) into CAR(2)
process as follows:

2− α1 = β1,

α1 − α2 − 1 = β2,

we presents the fitted regression variable of the CAR(2) model for PV in Table 8.

Table 8: CAR(2)-PVgeneration.

Operators α1 α2

50Hertz 1.7193 0.6999
Amprion 1.5786 0.5817

TransnetBW 1.6571 0.5986

3 Empirical Analysis of Power Prices

3.1 Modelling the electricity spot prices

In this section, we aim to model the electricity spot prices as an application of the proposed PV
model. The volume of PV production may impact electricity spot prices. Thus, our main purpose
in this section is to discover the relationship between electricity power prices and PV production.
For this purpose, we use the same model as proposed by Benth and Ibrahim [5] as follows:

S(t) = −ρ lnPV (t) +R(t). (10)

The variableS(t)denotes the spot prices of electricity, withR(t) being the corresponding stochastic
process. Additionally, the relationship between energy spot prices and photovoltaic production is
depicted by ρ. Since the data on the electricity spot prices are unavailable, we then use the Monte
Carlo simulation to get the prices. Noteworthy tomention thatwe only do the analysis of electricity
spot prices for 50Hertz as the results obtained for the other two TSOs are almost similar. Based
on the Monte Carlo simulation results, we plot the electricity spot price time series in Figure 14.
We observe a clear linear trend in the simulated data. Furthermore, the correlation coefficient is
found to be−0.3871. This finding demonstrates the inverse correlation between power spot prices
and photovoltaic production.

Figure 14: (Left) Time plot series of Power Prices. (Right) Power spot prices vs ln(PV Production).
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3.2 Modelling the error term, R(t)

LetR(t) represent the combination of the deterministic seasonality functionU(t) and the stochas-
tic component Y (t),

R(t) = U(t) + Y (t). (11)

The notation U(t) present the combination of weekends, seasons, and yearly cyclical patterns
where the function is given as follows:

U(t) = a+ bt+

2∑
i=1

liWi +

4∑
j=2

kjMj + c cos

(
2πu(t− v)

365

)
, (12)

where Wi represents the weekend (Saturday and Sunday), while Mj represent the seasonal pat-
tern (winter, summer and fall). To represent weekend and seasonal effects, we use dummy vari-
ables, where W1 = 1t=Saturday and W2 = 1t=Sunday, to represent Saturday and Sunday, respec-
tively. Correspondingly, M2, M3 and M4 represent winter, summer, and fall seasons. We omit
one dummy parameter, which is M1 to avoid perfect multicollinearity. Dummy parameters were
used in a number of earlier studies, including Becker et al. [3], Huisman et al. [23] and Ramiah
et al. [33] to account for the seasonal trends and deterministic component of electricity costs. The
cosine function is used to elaborate the annual cyclical pattern. We use the same estimated coeffi-
cient from previous work [5] since we use Monte Carlo simulation to simulate the electrical price
based on the electrical price on 31st December 2015. In Table 9, we report the estimated coefficients
of U(t). The study reveals that the outcomes during weekends and seasons exhibit a considerable
degree of strength, whereas the magnitude of the trigonometric component is merely c = 1.918.
Plus, estimated coefficients are found to be considerable with p < 2e − 16 excluded for the final
coefficients, u, and v, as the frequency and phase shift, accordingly.

Table 9: Estimated coefficients of seasonality function, U(t).

a l1 l2 k2 k3 k4 b c u v

50.760 -10.340 -18.220 6.380 4.988 7.883 -0.015 1.918 1.069 30.510

We demonstrate the fitted plot, the autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the deseasonalized data in Figure 15. It can be observed that we managed
to remove the weekend effect shown in Figure 15. The PACF plot shows that AR(3) is sufficient
to explain the random factor in the simulated electricity spot prices. We report the estimated
coefficient in Table 10. There are no significant lags in the ACF plot of the error terms, as shown in
Figure 16. Thus, we can conclude that the error terms are white noise. Furthermore, by observing
the density and quantile plots in Figure 17, we may assume that the error terms follow a normal
distribution. This has been supported by the insignificant p-value of the K-S statistics, which it
found to be 0.092, greater than the significant level, α = 0.05. This implies that it is not strong
enough to reject the null hypothesis of normality. Based on our analysis, it is recommended to
continue utilising Gaussian independent noise for this particular scenario. Upon conducting a
meticulous examination of the density and Q-Q plots (refer to Figure 17), it becomes evident that
there is a presence of heavy-tailed behaviour. It is worth noting that the residual noise exhibits a
good fit with the normal distribution, despite the presence of occasional spikes in the power price
data.
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Figure 15: (Above) Fitted curve of power prices. (Bottom Left) ACF of residuals. (Bottom Right) PACF of residuals.

Table 10: Regression parameters of AR(3).

β1 β2 β3

0.404 0.086 0.070

Figure 16: ACF of R(t).

Figure 17: (Left) Plot of error term distribution. (Right) Quantile plot.

We do the same analysis as for power spot price as in Section 2.5. By using system of equations
as been used in Benth and Šaltytė Benth [8],
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3− α1 = β1,

2α1 − α2 − 3 = β2,

α2 + 1− (α1 + α3) = β3,

we display the fitted regression parameters of CAR in Table 11 as follows:

Table 11: Fitted regression coefficients of CAR(3) - Power Spot Price.

α1 α2 α3

2.596 2.107 0.440

4 Quanto Option

Renewable energy has become an important element of the existing energy structure and a
main direction of energy development. Wind and solar energy have been developed extensively
as typical examples of renewable energy. "Energy" has become the primary use because of the con-
straints in energy transmission. Overproduction of energy cannot be preserved cost-effectively,
and other power sources, such as coal, gas, or nuclear power, must provide for any underpro-
duction. However, power generation from fossil fuels is essential for supply consistency, but they
can only satisfy the leftover needs left from renewables, as in the German market. Renewable en-
ergy will be hit double due to low PV production and low power prices. We come up with these
quanto options to help renewable energy producers. To mitigate the impact of cost and volume
risk, it is advisable to explore alternative options that can provide protection against both pricing
and supply uncertainties. A put-put mechanism that pertains to the relationship between price
and production of photovoltaic energy may be attractive due to its potential benefits.

max
(
L− PV (T ), 0

)
×max

(
K − S(T ), 0

)
, (13)

the variablesK and L are contract-specific, while S(T ) and PV (T ) represent the power spot price
and PV generation, respectively. The notation

(
L − PV (T )

)
×
(
K − S(T )

)
is the compensation

that will be received by the contract’s holder in which PV (T ) < L (low supply from PV) and
S(T ) < K (low prices) are situations where the production is at a loss. The preceding discourse
pertaining to previous research endeavours, namely Kang et al. [27], Benth et al. [6], Brik and
Roncoroni [25], serves as a case study of an energy quanto option. Thus, it is imperative to develop
a hybrid model that incorporates both power prices and photovoltaic (PV) production in order to
comprehensively analyse the distribution of payoffs, pricing of options, and optimal strike design.

Quanto options have been increasingly popular in the energymarkets in recent years. The pay-
off from such options is usually calculated using an underlying energy index and a temperature
measurement. They consider the high correlation between energy usage and particular weather
conditions, allowing price and weather risk to be managed together. As a result, these products
are more effective and, in many circumstances, less expensive than plain vanilla alternatives [12].
Typically, the available alternatives are determined by a mean pricing value and a meteorologi-
cal factor, namely a temperature indicator that reflects the level of demand. Power price options
are available in several power markets, and the Chicago Mercantile Exchange provides weather-
variable derivatives to some extent. On the other hand, Benth et al. [6] describe a method for
pricing options that include a pricingmeasure. Brik and Roncoroni [25] examine the optimumde-
sign for such options. Kang and Zhou [28] design an empirical hedging model for energy quanto
contracts and explore a few intriguing hedging challenges linked to financial instruments.
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Consider an empirical example of a quanto option payoff, as shown in eq. (13). We undertake
aMonte Carlo analysis of the payoff histogram and the expected payoff value based on themodels
for PV production and electricity price derived in the prior sections. Over a year, we have focused
on four different quanto option contracts. All four contracts mature in T = 30 days from "present,"
where "present" is (i) 1st January, (ii) 1st April, (iii) 1st July, and (iv) 1st October, with 2021 as
the basis year. We perform Monte Carlo simulations of the dynamics of PV (t) and S(t) with
t = 0, 1, 2, . . . , 30, presuming PV (t) as a skewed- normal noise and S(t) as a normal noise. The
initial values are X(0) = 0, so that PV (0) = exp(Λ(30)), with Λ(0) as the seasonality function at
"present" in the four different cases. Next, we let Y (0) = 0, so that S(0) = −ρ lnPV (0) +U(0). As
strike prices, we set L = exp(Λ(30)) and K = −ρ(30) + U(30). The seasonal values of the PV and
spot price at exercise time T = 30, ranging by the four seasons, namely winter, spring, summer,
and autumn, are conventionally represented by the months of January, April, July, and October,
respectively. As a result, at the exercise time, we examine quanto options that would protect PV
production exceeding seasonality and spot prices falling below the "seasonal mean".

From 400,000 outcomes in the Monte Carlo simulation, we plotted all four histograms of the
payoff functions

(
max(L(30) − PV, 0) and max(K − S(30))

)
, respectively, in Figures 18 and 19.

The PV payoffs vary greatly depending on the season, as in Figure 18. We have low PV production
and significant volatility in the winter (January), whereas we have the highest average production
and moderate volatility in the summer (July). This is reflected in the histograms in Figure 18,
where spring (April) and autumn (October) have the highest spread in the simulated payoffs.
The highest frequency of PV production distribution per hour in January is between 0 to 50MWH,
approximately 8000; in April, July, and October, the highest frequency is between 0 to 100MWH,
approximately 6000, 7000, and 9000, respectively.

Figure 18: Histogram of payoff function from PV production put option.

Meanwhile, based on Figure 19, the electricity price payoffs are consistent throughout the year.
The highest frequency of power prices distribution for January, April, July, andOctober is between
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0 to 1 e/MWH, approximately 7500, 6500, 7000, and 9000, respectively.

Figure 19: Histogram of payoff function from power price put option.

The payoff of the quanto option for each of the four seasons is shown in Figure 20, where we
observed that the highest frequency in January, April, July, and October is between e0 to e100,
which amounted to 9500, 8000, 8500 and 8000 respectively. In addition, we can see that the pattern
of quanto options payoff of four seasons varies depending on the season, as in the PV payoff in
Figure 18.
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Figure 20: Histogram of payoff function from quanto option.

Next, we compute the quanto options price as in eq. (14), where r is the interest rate. Finally, in
Figure 21, we display the histogram of monthly quanto options prices representing each season.
For example, the average quanto options price for January is e472.22, April is e3104.40, July is
e1160.88 and October ise638.17. The price of the quanto options varies more in July than in other
seasons.

T∑
t=0

e−rt
[
max

(
L− PV (T ), 0

)
×max

(
K − S(T ), 0

)]
. (14)
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Figure 21: Histogram of quanto price of each month.

5 Conclusion

We have revised the results from earlier work of PV production dynamics employing the in-
tensity of sun to explain the seasonal mean fluctuation. The five years of daily output data at
12 o’clock from three TSOs in Germany served as the basis for our research. The deseasonal-
ized PV production data neatly exhibits a second-order AR process with seasonal volatility and
non-Gaussian noise. As a consequence, we recommended simulating the error with the skewed
normal distribution.

We looked into a few benefits that our PVmodelmight provide. Initially, we employed PV gen-
eration as an independent parameter to analysis dynamics of power price, specifically to establish
a correlation between spot prices of electricity and the logarithmic PV production. As a purpose
to simulate the cost of electricity, Monte Carlo simulation has been used. After PV generation has
been eliminated, the dynamics of the power spot price can be adequately represented by using a
simple third-order AR dynamic with normally distributed noise.

Additionally, we deliberated on the potential application of our methodology to analyse con-
tracts related to photovoltaic virtual power plants and quanto options. Our research demonstrates
the viability of developing continuous-time models, such as continuous-time autoregressive pro-
cesses. These methods are beneficial for assessing quanto options, calculating the cost and pro-
duction risk jointly, and hedging such options. In our case, we concentrate on companies that
produce renewable energy. This approach could potentially yield advantages for producers of
non-renewable energy sources. Given the significant supply and price risks that both parties are
subject to, many novel option structures may be useful for hedging.
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We want to find out the quanto option pricing in next study by including the risk-free interest
rate as a discount factor. In addition, we aim to model the Levy process for Quanto options since
our PV and power prices are not normally distributed. Finally, it would also be interesting to
construct models that include wind power generation. These intriguing subjects are left for future
discovery.
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